Catalytic Stereoselective Synthesis of α - or β -Glucosides Using a Single Glycosyl Donor, 1-O-2'-(2'-Methoxyethoxy)acetyl-Glucopyranose Derivative

Koki MATSUBARA, Takenori SASAKI, and Teruaki MUKAIYAMA

Department of Applied Chemistry, Faculty of Science,

Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162

In the presence of a catalytic amount of active acidic species generated from $SnCl_4$ and $AgClO_4$, various α -glucosides are stereoselectively synthesized in excellent yields from 1-O-2'-(2'-methoxyethoxy)acetyl-2,3,4,6-tetra-O-benzyl-D-glucopyranose and alkyl trimethylsilyl ethers. β -Glucosides are also selectively prepared by using a catalyst, generated from $SiCl_4$ and $AgClO_4$, in the above reaction.

Stereoselective glycosylation reaction is currently one of the most important problems in carbohydrate chemistry. Several methods for the preparation of both anomers of glucosides have been reported, $^{(1)}$ however, there are few examples that achieved a convenient and a highly stereoselective procedure for the preparation of both anomers separately using the catalytic amount of activators. Therefore, it is one of challenging topics to achieve the preparation of α - or β -anomers distinctively from a single glycosyl donor by a catalytic process. In this communication, we would like to describe an efficient method for the selective preparation of α - or β -anomers starting from a single glycosyl donor having 2-(2-methoxyethoxy)acetoxy group at an anomeric center, that is 1-O-2'-(2'-methoxyethoxy)acetyl-2,3,4,6-tetra-O-benzyl-D-glucopyranose, by choosing a suitable catalyst.

Recently, we have reported a method for the preparation of α -glucosides from 1-O-acetyl-2,3,4,6-tetra-O-benzyl-D-glucopyranose (1) by the use of a catalytic amount of active species generated from tin(IV) chloride and silver perchlorate (1:1).²⁾ In the first place, glycosylation reaction of 1 with cyclohexyl trimethylsilyl ether (2) was attempted at 0 °C in dichloromethane instead of ether in the above mentioned experiment and it was found that the ratio of the produced β -glucoside increased up to 51/49(yield = 94%). Next, the reaction was tried at -23 °C with a view to achieving higher β -selectivity and α/β -selectivity increased up to 17/83 (yield = 48%) as expected. Furthermore, yield increased up to 85% (α/β = 24/76) when SnCl₂(ClO₄)₂, generated from tin(IV) chloride and twofold of silver perchlorate, was used as a catalyst. Several other leaving groups at an anomeric position of the glycosyl donor were screened by taking the above mentioned reaction as a model (see Table 1).

It was shown that the corresponding β -glucoside was obtained in a good yield with high stereoselectivity when 2-(2-methoxyethoxy)acetoxy group was employed as a leaving group. Furthermore, after screening various catalysts and solvents, the best result was obtained when SiCl₂(ClO₄)₂, generated in situ from silicon(IV) chloride and silver perchlorate, was used as a catalyst in acetonitrile (see Table 2).

Several examples of the present glycosylation reaction of 1-O-2'-(2'-methoxyethoxy)acetyl-2,3,4,6-tetra-O-benzyl-D-glucopyranose (3; $\alpha/\beta=4/1)^3$) with alkyl trimethylsilyl ethers are summarized in Table 3.

Thus, 3 was also employed as a glycosyl donor in the synthesis of α -glucosides since 2-(2-

Table 1. Effect of leaving groups

Entry	-R	Time / h	Yield / %	α/β
1	-Me	10	85	24 / 76
2	-CH ₂ Br	14	79	22 / 78
3	-CH ₂ I	11	91	24 / 76
4	-CH ₂ OMe	10	82	18 / 82
5	-CH ₂ CH ₂ OMe	20	66	19 / 81
6	-CH ₂ SMe	5	40	15 / 85
7	-CH ₂ OCH ₂ CH ₂ OMe	6	90	16 / 84
8	MeO	8	90	19 / 81

Table 2. Effect of catalysts and solvents

Entry	Catalyst	Solvent	Temp / °C	Yield / %	α/β
1	SnCl ₄ - 2AgClO ₄	CH ₂ Cl ₂	-23	90	16 / 84
2	SnCl ₄ - 2AgOTf	†	†	26	22 / 78
3	TiCl ₄ - 2AgClO ₄	†	<u>†</u>	14	19 / 81
4	SiCl ₄ - 2AgClO ₄	†	†	90	15 / 85
5	SnCl ₂ - 2AgClO ₄	<u>†</u>	†	trace	
6	Sn(OTf) ₂	†	†	trace	
7	SiCl ₄ - 2AgClO ₄	CI CI	<u>†</u>	99	10 / 90
8	†	Toluene	†	45	44 / 56
9	†	MeNO ₂	<u>†</u>	23	36 / 64
10 a)	<u>†</u>	MeCN	-10	98	5 / 95

a) Reaction time = 12 h.

Method A: catalyst = SiCl₄ - 2AgClO₄ (20 mol%), solvent = MeCN, time = 12 h

Method B: catalyst = SnCl₄ - AgClO₄ (10 mol%), solvent = Et₂O, temp = -5 °C, time = 12 h

Table 3. Synthesis of α - and β -glucosides

		Method A			Method B		
Entry	ROTMS (1.2 equiv.)	Temp / °C a)	Yield / %	α/β	Yield / %	α/β	
1	OTMS	-10	quant.	3 / 97	quant.	98 / 2	
2	<u></u> -отмѕ	-10	98	5 / 95	98	97 / 3	
3	3β-CholestanyIOTMS	-10	97	5 / 95	98	97 / 3	
4	BnO OMe	-10	99	1 / 99	quant.	98 / 2	
5	TMSO OBn BnO OMe	-5	85	9 / 91	95	96 / 4	
6	TMSO CO ₂ Tce b)	-10	98	3 / 97	95	97 / 3	

a) Alkyl trimethylsilyl ethers were added at -23 °C, and then warmed up to -10 or -5 °C.

methoxyethoxy)acetoxy group was superior to acetoxy group as a leaving group (see Table 3).

When the glucopyranose 3 was used as a glycosyl donor, all of the selectivities of the produced glucosides were superior to those obtained by using 1. Thus, high yields and selections of either α - or β -anomers are dependent on the high reactivity of 3 compared with the other glycosyl donors mentioned above (see Table 1).

Pure α - and β -anomers of 3 were employed respectively under the above reaction conditions in order to ascertain whether the ratio of α - and β -isomers of produced glucosides was dependent on the ratio of starting α - and β -anomers of 3 or not.⁴⁾ The same α/β -selectivity was observed in both reactions, indicating that the reactions proceeded via S_N1 process through the common oxocarbenium cation.

The followings are typical procedures for the preparation of both anomers of methyl 2,3,4-tri-O-benzyl-6-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)- α -D-glucopyranoside. β -Anomer: a solution of silicon(IV) chloride (0.06 mmol) in toluene(0.1 ml) was added to a solution of silver perchlorate (0.12 mmol) in acetonitrile (6 ml) at room temperature, and the mixture was shielded from the light and stirred for 1 h. To this mixture was added a solution of 3 (0.3 mmol) and methyl 2,3,4-tri-O-benzyl-6-O-trimethylsilyl- α -D-glucopyranoside (0.36

b) Troc = 2,2,2-Trichloroethoxycarbonyl, Tce = 2,2,2-Trichloroethyl.

mmol) in acetonitrile (4 ml) at -23 °C, and the mixture was then warmed up to -10 °C. After stirring for an additional 12 h, aqueous sodium hydrogen carbonate was added. Usual work up and separation by TLC afforded β -anomer (98%) and α -anomer (1%). α -Anomer: a solution of tin(IV) chloride (0.03 mmol) in toluene (0.1 ml) was added to a solution of silver perchlorate (0.03 mmol) in ether (6 ml) at room temperature, and the mixture was shielded from the light and stirred for 1 h. To this mixture was added a solution of 3 (0.3 mmol) and methyl 2,3,4-tri-O-benzyl-6-O-trimethylsilyl- α -D-glucopyranoside (0.36 mmol) in ether (4 ml) at -5 °C. After stirring for an additional 12 h, aqueous sodium hydrogen carbonate was added. Usual work up and separation by TLC afforded α -anomer (98%) and β -anomer (2%).

Thus, highly stereoselective synthesis of α - or β -glucosides starting from a single glycosyl donor is successfully carried out by using glucopyranose having 2-(2-methoxyethoxy)acetoxy group at an anomeric center with SnCl₃(ClO₄) or SiCl₂(ClO₄)₂ as a catalyst. The present glycosylation method is superior to conventional ones^{1,2}) with regard to the synthesis of α -glucosides, and has a wide applicability to various substrates except for those that are very sensitive to acidic conditions. Whereas, in the case of the synthesis of β -glucosides, the selectivity decreases when hindered nucleophiles are employed, therefore, the imidate procedure is more preferable.⁵)

References

- S. Hashimoto, M. Hayashi, and R. Noyori, Tetrahedron Lett., 25, 1379 (1984); T. Matsumoto, H. Maeta, and K. Suzuki, ibid., 29, 3567, 3571, 3575 (1988); K. Suzuki, H. Maeta, and T. Matsumoto, ibid., 30, 4853 (1989); S. Kobayashi, K. Koide, and M. Ohno, ibid., 31, 2435 (1990); K. Koide, M. Ohno, and S. Kobayashi, ibid., 32, 7065 (1991); K. Fukase, A. Hasuoka, I. Kinoshita, and S. Kusumoto, ibid., 33, 7165 (1992).
- 2) T. Mukaiyama, T. Takashima, M. Katsurada, and H. Aizawa, *Chem. Lett.*, 1991, 533; T. Mukaiyama, M. Katsurada, and T. Takashima, *ibid.*, 1991, 985.
- 3) ¹H NMR (CDCl₃) Spectral data of H-1; α -isomer: δ 6.46 (d, J=3.30 Hz), β -isomer: δ 5.68 (d, J=7.92 Hz).
- 4) β-Anomer of 3 was prepared in the similar manner to that reported by H. Kunz. H. Kunz, R. Kullmann, P. Wernig, and J. Zimmer, *Tetrahedron Lett.*, 33, 1969 (1992).
- 5) R. R. Schmidt, M. Behrendt, A. Toepfer, Synlett, 1990, 694.

(Received May 7, 1993)